Ultrafast excited-state dynamics in some spirooxazines and chromenes. Evidence for a dual relaxation pathway.
نویسندگان
چکیده
A great variety of technological applications makes photochromism a currently appealing theme for basic studies. In this work, excited state dynamics of two spirooxazines and two naphthopyrans, that upon UV irradiation undergo thermally reversible conversion to coloured photomerocyanines, have been investigated by using pump-probe techniques (femtosecond time resolution). The breakage of the C-O bond, involved in the photoreaction, has been found to occur within a few hundreds of femtoseconds producing a first transient that evolved on picosecond time-scale to the most stable isomer through a number of intermediates that depended on the solvent and the structure of the photochrome. The peculiar behaviour of one of the molecules studied (1,3-dihydro-3,3-dimethyl-1-isobutyl-6'-(2,3-dihydro-1H-indol-1-yl)spiro [2H-indole-2,3'-3H-naphtho[2,1-b][1,4]oxazine]) has been investigated in depth in various media because it revealed an unusual dual photochemistry pathway. This finding is traced to reactivity of π,π* and ICT excited states whose relative populations are controlled by the polarity of the solvent.
منابع مشابه
Influence of Interface Thermal Resistance on Relaxation Dynamics of Metal-Dielectric Nanocomposite Materials under Ultrafast Pulse Laser Excitation
Nanocomposite materials, including noble metal nanoparticles embedded in a dielectric host medium, are interesting because of their optical properties linked to surface plasmon resonance phenomena. For studding of nonlinear optical properties and/or energy transfer process, these materials may be excited by ultrashort pulse laser with a temporal width varying from some femtoseconds to some hund...
متن کاملUltrafast study of electronic relaxation dynamics in Au11 nanoclusters
Ultrafast electronic relaxation measurements in thiol-capped Au11 reveal an excited state lifetime of >500 ps, similar to Au13 and Au28. Upon extended exposure to laser light, a small amplitude, fast relaxation component was observed and attributed to formation of larger particles or aggregates. The long lifetime, combined with a lack of excitation intensity dependence, indicates that Au11 beha...
متن کاملUltrafast Luminescence Decay in Rhenium(I) Complexes with Imidazo[4,5-f]-1,10-Phenanthroline Ligands: TDDFT Method
The interpretation of the ultrafast luminescence decay in [Re(Br(CO)3(N^N)] complexes as a new group of chromophoric imidazo[4,5-f]-1,10-phenanthroline ligands, including 1,2-dimethoxy benzene, tert-butyl benzene (L4) and 1,2,3-trimethoxy benzene, tert-butyl benzene (L6), was studied. Fac-[Re(Br(CO)3L4 and L6] with different aryl groups were calculated in singlet and triplet excited states. The...
متن کاملUltrafast excited-state dynamics associated with the photoisomerization of a cyanine dye.
The ultrafast excited-state dynamics of a cyanine dye, 3,3'-bis(3-sulfopropyl)-5,5'-dimethoxy-thiacyanine triethylaminium salt, was investigated by using conventional time-resolved fluorescence up-conversion technique. The fluorescence decay can be well described as tri-exponential kinetics, which indicates the excited-state population decays through the bond-twist, vibrational and radiative re...
متن کاملTime-resolved photoelectron imaging of the chloranil radical anion: ultrafast relaxation of electronically excited electron acceptor states.
The spectroscopy and dynamics of near-threshold excited states of the isolated chloranil radical anion are investigated using photoelectron imaging. The photoelectron images taken at 480 nm clearly indicate resonance-enhanced photodetachment via a bound electronic excited state. Time-resolved photoelectron imaging reveals that the excited state rapidly decays on a timescale of 130 fs via intern...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology
دوره 9 10 شماره
صفحات -
تاریخ انتشار 2010